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We obtain cluster expansions for small random perturbations of deterministic 
Toom's automata in the one-dimensional case. Exponential convergence follows. 
Analyticity of invariant measures is examined as well as the simplest multi- 
dimensional case. 
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1. I N T R O D U C T I O N  

Processes with local interaction in the "high-temperature" region (i.e., when 
the interaction is weak) are sufficiently well understood (see review in 
refs. 1, and 7). One can reasonably assert that the low-temperature region 
for Gibb's random fields corresponds to small perturbations of deter- 
ministic processes with local interaction. One of the deepest results is the 
proof of stability by Toom (6) for his class of deterministic processes. For 
the simplest processes of this type (e.g., for Stavskaya's model) cluster 
expansion techniques and, as a result, stability, exponential convergence, 
and an analytic property were known earlier. (3-5) In this paper we solve this 
problem completely (mainly the one of exponential convergence) for the 
general Toom's model in the one-dimensional case. For more dimensions 
only very special cases can be treated with our ideas. The general case now 
seems to be beyond our reach. 
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PCA Formalism 

We consider PCAs with memory which describe the stochastic dis- 
crete-time evolution of spin variables on the lattice Z a. We denote the value 
of the spin at the point x ~ Z  d at time t ~ Z  by a(x.o = +1 and write _at for 
the configuration at time t; a~ will denote the configuration on the space- 
time set A ~ Z a+ ~. We assume that the past of the PCA is fixed: a(~,o = +1 
if t < 0. The PCA evolves by simultaneous updating of spins. That is, 
the spin configurations _at_l,..., _o-t_ r, t~>0, determine the probabilities 
P(a(x,t)[o-t_l,...,o't_r), O'(x,t) = _1 of the spin values at each point x 
at time t. The natural number T is called the depth of memory. The 
conditional probability distribution of qt is a product measure given by 

1-I e(cr(x,t) lgt-l,'",-~t T) (1.1) 
x ~ Z  d 

The transition probabilities satisfy the normalization condition 

P(~r(x,,) I _at_ 1,..., g,_ r) = 1 (1.2) 
Cr(x,t) = + 1  

which is taken into account by writing 

P(~r(x,~) I _a,- 1 ..... q t - T ) = � 8 9  oh(x . , ) (a_t l  ..... _o't T)] (1.3) 

with [h(x,,)(gt-1,...,gt r ) l ~  <1.  We assume that h(x,t) is translation 
invariant, time homogeneous, and of finite range, that is, 

ho(_~ 1 . . .  _G_ T) = h o ( ~ : )  

where U c Z d • { - 1 ..... - T} is a fixed finite set, which we call the basic set 
of the origin _0 of the lattice Z d+ 1. We shall consider nearly deterministic 
PCAs with 

ho = ~o .  (1 - 2 f o )  (1.4) 

where I~ol = 1 and Ifol ~< e for a small parameter e > 0. If f_ o ---0, we obtain 
a deterministic PCA with deterministic function qS_o. The existence of a 
small perturbation f_o implies that for each point (x, t )~  Z d+1 

P ( f f  ( x, t ) 5~ ~)  ( x,  t ) ( ff- t - 1 , ' " ,  _ f i t -  r ) ) <~ • 

The transition rates (1.1)-(1.4) define a distribution on the space of spin 
configurations on Z a+ 1. We shall investigate the limiting behavior of finite- 
dimensional probabilities P((rA), A c Z d+l. Thus we shall say that PCA 
exponentially converges to the stationary state if the probabilities P(ar~A) 
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tend to some limit l~(aA) as z e N tends to infinity and this convergence is 
exponential: that is, there exist constants C(A) dependent on A and 7 < 1 
independent of A such that 

] # ( ~ A )  - P(aZ~A)[  < C(A). ~ 

Here, by T~A we denote a time shift of A- - the  set {(0, ~ )+  a[ a e A}. 
A PCA with the deterministic function ~b o is called stable if for any 

3 > 0 there is an e > 0 such that for any z e Z d~-I we have P(az = - 1 ) <  6 
uniformly in f0, provided Ifo[ < e. 

Now consider Toom's  criterion of stability for PCAs under considera- 
tion given in ref. 6. Toom calls a subset Q c U a plus set if ~o(av)  = +1 
for any configuration crv equal to + 1 for all z e Q ; Q is a minimal plus set 
if it contains no other plus sets. From now on we shall consider Z a+l as 
a subset of real space Nd+l; for any A c Z  a+l we denote by Conv(A) the 
convex hull of A in R a+l. Toom stated his criterion for monotone deter- 
ministic functions 4 o satisfying ~bo(G)) ~< ~bo(a/: ) if a )  ~< ~'/j, where the last 
inequality is considered at every point of U. For  monotone PCAs satisfying 
conditions (1.1)-(1.4) Toom's  criterion is stated as follows: "A PCA is 
stable if and only if there is no ray from the origin, intersecting the convex 
hull of any minimal plus set" (Toom's condition). 

We shall prove that for d =  1 Toom's  condition is sufficient for 
exponential convergence of the PCA satisfying (1.1)-(1.4) to a stationary 
state. The requirement of monotonicity may be omitted. For  d~> 1 we con- 
sider one very special case, which is a generalization of the well-known 
Stavskaya's model. 

Certain constructions used in our investigation are rather geometrical, 
so we need to introduce some, mostly well-known, geometrical notions. 
These notions are useful both for cases d =  1 and d~> 1, which is why we 
shall present them in the introductory section. 

For  any set G ~  a+l by z + G  we denote a shift { z + g [  g e G }  of the 
set G, and we designate U(z)= z + U the basic set of the point z e Z a+ 1. 
The set O =  {+_rive U} ~ { v - w [ v ,  we  U} is called a neighborhood of 
zero and the set O(z) = z + 0 is the neighborhood of the point z. 

The notation IA] will be used for the cardinality of any set A c Z a+l 
For  arbitrary A c Z a+ 1 we define its height upA = max{t] (x, t) e A } and 
its top layer s u p A =  {(x, t ) e A l t = u p A } .  By Zt  a+l and Na+l we denote 
the sets Z a x  {t, t -  i,...} and Rex  [0, t],  respectively. We shall write Rt(A) 
for the projection of the set A ~ Z  a+l into --tTa+l, so Rt(A)=Ac~Za,+I;  
U ( A ) =  {(x, r ) ~ A [ v =  t} is a t-cut of the set A. The set A c Z  a+l is called 
connected if for any u, v ~ A there exist zl = u, z2 ..... zm = v, such that z~ e A 
and z~+le O(z~), i =  1 ..... m - 1 .  For  points u and v of this sort we shall 
write u . 4 v .  
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The designation a~ will be used for the configuration of - 1  on A 
and a J  for the configuration of + 1. For convenience we shall write 
P(A  ~ , A +2 ,..., B ~  , B ~  ,..., ac~, ac2,... ) for the probability of the configura- 
tion coinciding with a + A~ on A~, aBi o n  B~, and configuration ac~ on C~, 
i = 1, 2,.... The number of sets in P(-)  is arbitrary. Similarly, a notation 

P ( A ? ,  A ~  ,..., B T ,  B 2 ,..., act,  ac2 ..... I D~-, D~- ..... E~-, E 2- ..... aft ,  aF2,...) 

will be used for the conditional probability of the configuration specified 
above, given the configuration which agrees with a § - Di' agi'  aFi' i=  1, 2,.... 

Having described these concepts we now proceed to the meaningful 
part of our work. 

2. T H E  CASE d = l  

We shall prove the theorem for d =  1 under the condition, which is 
wider than that given by Toom, stated as follows: 

�9 Modified Toom's Condition: There exist two plus sets Ql and Qr 
and a line l passing through the origin and separating these sets 
in R2. 

Obviously any stable PCA has at least one plus set, because if 
�9 o(a + ) =  - 1 ,  the PCA is unstable. Thus we reformulate Toom's condition 
in a more general form, since we do not require monotonicity of the 
deterministic function. 

T h e o r e m  1. Consider the PCA defined by (1.1) (1.4) and satisfying 
the modified Toom's condition. Then for sufficiently small e > 0 the PCA 
converges exponentially to the stationary state. 

We shall give the proof for the case T =  1 only. The case T >  1 is 
similar, but has rather annoying technicalities (see Berezner(8)). Besides, 
our method allow us to consider a few modifications of the considered 
models. For example, we can allow the perturbation f_0 from (1.4) not to 
be bounded by e for configurations a U where ~ o ( a v ) =  -1 .  We can apply 
our constructions for more values of a(x,t). (s) 

Remark 1. To prove the theorem, we have to prove the exponen- 
tial convergence of probability P(a~A) ,  "C ~ o0. Our goal is to obtain the 
exponentially convergent (uniformly in z) series ~n C~(A) for the probabil- 
ity P(aT~A), where the coefficients of the two series Z C~1(A) and Z C~2(A) 
can differ only for n~>min(rl ,%).  This will immediately imply the 
exponential convergence of P(~T~A) a s  z--+ or. 
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For this purpose we shall introduce a special construction, which we 
shall call the cluster expansion. 

The C o n s t r u c t i o n  of  the  C luster  

For convenience we assume that the basic set U of the origin is the 
set of points ( - v , - 1 )  ..... ( v , - 1 ) ,  v e N, adding points of fictitious 
dependence. 

Consider arbitrary finite sets A, F e Z ;  such that upF< upA = t, and 
fix an arbitrary configuration q on Z 2 coinciding with a2  on A and some 
fixed configuration o F on F. 

R e m a r k  2. The necessity of considering set F with fixed configura- 
tion on it will become clear later. Such a set will represent a set of points 
where the configuration will be fixed as a result of using the multistep 
cluster expansion. 

For  any such configuration we obtain a partition of Z~ into the 
maximal connected sets {G~}, ~oe(2 +, where q is equal to +1. Let us 
choose sets G;-,..., Gs satisfying 

s u p A c  ~) G~ and supAc~Gir i = l , . . . , m  (2.1) 
i = l  

We shall call such sets carrier sets of the cluster. To any carrier set we 
assign a component of the cluster in the same way. So, to avoid unne- 
cessary designations, we shall consider in detail the case of the unique 
carrier set G~-, which we shall denote by omitting indices. The case of the 
multicomponent carrier will then be obtain by simply taking the union of 
corresponding components of the cluster. 

Taking the set G, we shall assign to it a set F c  Z~, which we shall call 
the cluster, a corresponding oriented contour P in ~ ,  and the set ~?Fc Z ,  2, 
called the boundary of F. 

We shall consider only such configurations q on Z ,  2 for which carrier 
sets are finite, because it is easy to prove that the probability of the infinite 
carrier set of a finite set A is zero. To do this, let us take a sequence of lines 
l k = l +  (0, k(2v + 1 )) in N2, k e Z (remember that I is a separating line from 
the modified Toom condition). By Jx we denote a set {(x, z )eZ2 , ,  z ~>01 
either (x,v)  lies in the band between lk and lk+l or between l_k and 
l -k-1} .  As a result of the choice of ark and the properties of separating lines 
we have P(J~)~>(1 - e) Isikl, and the configurations aj2k,+ k e n  are inde- 
pendent. As ~2k~1 P(J~k)= oO we obtain that with the probability one, 
there exist two bands of + 1 points, separating any set inside from infinity, 
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which implies that any carrier set of the cluster is finite with probability 
one. Now denote 

G = U [u, = 
u, v e a : u e O ( v )  

where any [u, v] is a segment from R a. There exists a closed, oriented 
anticlockwise contour F formed by the ordered set of segments [zo, zl] ,  
[z l ,  z2],--., [ z ,_  1, z , ] ,  [z , ,  Zo] oriented from the first to the second point 
and satisfying the following conditions: 

(a) z , + ~ e O ( z i ) ,  [ZiaZi+I]('3G={zi, zi+I}, i = l , . . . , n .  

(b) O(z i )  c~ G n A n g ( z  i _ 1, z i ,  zi+ 1) = (25, i = 1,..., n, where Ang(u ,  z, v)  
is the angle in ~2 formed by the rays [z, u) and [z, v), turning 
from the first to the second ray anticlockwise. 

(c) The set G \ F  belongs to the internal d o m a i n / ~  N~ of the con- 
tour F, which lies to the left of the contour F, while traversing 
F anticlockwise. 

(d) There does not exist any closed subcontour formed by the 
segments of f and oriented clockwise. 

The conditions (a)-(d), and especially the condition (b), are very construc- 
tive, and one can easily check the existence of the contour mentioned by 
straightforward construction of the contour. To do this, one can start from 
the point z 0 s sup G with the minimal x coordinate and then determine 
uniquely at every step the next segment of F in keeping with the conditions 
in (a)-(b). Using loose but descriptive geometric terminology, we can say 
that F is an external oriented geometrical boundary of the set G. 

The cluster F corresponding to the set G (and to the configuration a 
coinciding with o-~ on A and cr r on F)  is the set F =  F ~  G. The set 

is called the boundary of the cluster F. 
In the case where the carrier of the cluster consists of few components 

G i- ..... G2 let us assign to every component G f  the corresponding compo- 
nent F i of the cluster, contour Fi, and boundary ~F ~ and internal domain 
/~. Then we define F = U F i ; / ~ =  ~)/~; ~?F= U 8F~; F =  U/~i; i =  1 ..... m. 

Thus to any configuration g coinciding with a j  on A and cr r on F we 
assign the cluster F, which we shall call the cluster /" with kernel A and 
fixed configuration aF- 

The immediate consequence of the construction of the cluster is the 
fact that a coincides with a r on F and a0~r on 8F +. Moreover, if any other 
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configuration a agrees with O-A, ~ o-~r, and O-F, then its cluster is the 
same. 

Now we shall formulate one important property of clusters, which will 
be proved at the end of this section. 

We shall call a point z e F an error point if at least one of the plus sets 
z + Qr or z +  Qt belongs to 3F; this will imply qSz(o-v(,))= +1. The set of 
error points is denoted by e(F). 

I . e m m a  1. There exists sufficiently small e > 0 such that for any F 

I~(r)l > ~ - I r l  (2.3) 

This lemma will be proved at the end of this section. 
Now we are ready to give the cluster expansion for the probability 

P(o-Jo) of the configuration on an arbitrary finite set A0 = Z 2 (we introduce 
"0" to show that we are at the starting point of our expansion). Taking 
t = upAo, we consider all configurations q in Z~ coinciding with o'ao on A0, 
and assign to each such configuration the cluster F 0 = Fo(q) with kernel A0 
and corresponding sets 0Fo, To, F0. Taking into account the relation 
between o- and the cluster To, we can give the expansion 

P(a~o ) = ~ ~, P(o-) = ~ P(Ao, Fo,  OF + ) (2.4) 
1~0 e:Fo(a_)=Fo FO 

where the sum is over all possible clusters Fo. 
Let us consider the set Do from Z x  {0, 1, 2,...} defined by 

{ U(z)} l (AouOFowFo~Fo)  (2.5) 
Do= zes~aro 

So the points of Do belong to the basic set of sup 0F o and lie outside the 
interior of F o and the values of the configuration _a at these points are not 
fixed by the algorithm for constructing the cluster at the previous step. 
We can rewrite the probabilities on the right-hand side of (2.4) as 

P(A o, Fff, OFg)= E P(Ao, To,  OFg, ado) (2.6) 
aD o 

We shall write P,(A-,  B +, o-c,...) for the probability of the corresponding 
configuration on the projection of the sets in the parentheses in Z 2. 

Then the probability on the right side of (2.6) can be written as 

P(Ao, r o, o r  g, o-Do) 

= Pt(A o, F o, OFg, o-Oo) 

= P,-x(Ao,  Fo,  OF+, o-Do) 

• ro) -, U(OFo) + [ R ' - l (Aow Fo) -, R' ' (0ro)  +, ado) 

(2.7) 
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The second probability on the right-hand side is the conditional probability 
of the configuration on the t-cut U(Aow Fow ~Fo) under the condition 
of a fixed configuration on the projection of the set Ao w Fo w ~Fo w Do 
in Z 2 

t - - l "  

Taking into account that any configuration aD0 can be written as 
a~0 w aD0\B0+ for some Bo c Do, we write 

P(aDo)=P(Bo w(Do\Bo)) + = ~,  ( - 1 )  IW~176 .P(Wo) 
W0:B0 c W O ~  DO 

(2.8) 

Using the expression (2.7) and an argument similar to what is used in 
deriving formula (2.8), we can write expansion (2.6) as 

with 

P(Ao, Fo, OF +) 

= ~ Qtco~la(Ao, Fo, ~?Fo, Wo).P,_~(Ao, Fo, OFg, Wo) (2.9) 
WO ~ DO 

Q'oona(Ao, Fo, OFo, Wo) 

= Y~ (_1)1~o~ol  
Bo ~ Wo 

x P(Lt(Ao w Co) , L'(OFo) + 1 

Rt-l(Aow Fow Bo) -, R'-l(Orow Do\Bo) +) (2.10) 

The 4-tuple of sets Ao, Fo, OFo, Wo is denoted by Ho. A very important 
consequence of the definition (2.5) of the set Do and property (2.2) of the 
boundary ~?Fo is the fact that conditional probabilities in (2.10) do not 
depend on the time shift T ~, ~ ~ N, of all constructed sets. Thus if we apply 
our construction to the probabilities 

we obtain 

P(aT~iAo), i= 1, 2 

t + ~1 "el t + 1;2 "C2 Qr Ho)=Q~ond(T No) (2.11) 

This fact together with the property (2.3) and with the expansion (2.9) 
is the cornerstone of the expansion mentioned in Remark 1. We need 
only show how the probabilities on the right-hand side of (2.9) can be 
expressed through the probabilities in 2 Z t-2 in a similar way. Considering 
the probability P f _ I ( A o , F o , 3 F ~ , W o )  in (2.9), we determine 
A1 = Wow (Ao\(Fow/~o)) and take an arbitrary configuration o on Z~_ 1 
coinciding with o-~ on A1 and 0"F~ on the set F~ = R t-  I(Ho)\A~, where eF~ 
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has values fixed on the set F1 from the previous step of our algorithm. 
Here we write R'-I(Ho) for the union of the sets Rt-l(Ao), Rt-a(Fo), 
Rt-I(OFo), Rt-l(Wo). For each such configuration q on Z,  z i with the 
fixed configuration on A1 w B~ we construct cluster F 1 with the kernel A~ 
(see the section, "The Construction of the Cluster"). Thus 

P , _ , ( A o , r o , ~ r g ,  W o ) = ~ P  , I( ,~F,,Ai,Fi,~F +) (2.12) 
F1 

Defining D 1 in the same way as we have defined Do [-see general definition 
(2.13)], we can get the expansion for the probability on the left-hand side 
of (2.12) through the probabilities in Z2_2 . Thus the expansion of the type 
of (2.9) can be iterated many times. The difference is only in the growing 
number of points where the value of the configuration is fixed at the 
previous stages. Remember that at every stage we move down the t axis by 
a unit step. Assuming that we have constructed the chain of 4-tuples 
Hk = {Ao, Fo, 8Fo, Wo} ..... {Ak, Fk, 0Fk, Wk}, let us determine the 4-tuple 
of the ( k + l ) t h  step. We denote A~:+I=Ak\(Fkw['k)wW k and 
Fk+~ =R' k-l(H,:)\Ak+~. The cluster Fk+l with the kernel Ak+~ is then 
constructed for the configuration ~ in Z t2k_l with fixed values at the 
points of R'-k-l(Hk). The set Dk+l is the set from Z x  {0, 1, 2,..} defined 
by 

(k+,=o )/ Dk+ ,=U U (aFJnZ~ k ,) 
, , j  

(A~+, UaroU . - - u a r ~ + , ~ o U  ... u?~+,) (2.13) 

where U(G) = Uz~6 U(z) is the basic set of the set G. 
The expansion (2.9) of the (k+ 1)th step is then 

+ 
P , - k - l ( A o ,  F o ,  OF~- ..... Ak+ 1, F~-+ i, ~Fk+ ~) 

='Pt_k_l((TFk+ 1 , -'4k+ 1 , Fk-+ 1, d3F~-+ 1 ) 

E t - - k - - 1  ---- Qcond ( H k +  1) 
Fk+l, Wk+l ~ Dk+ 1 

x Pt_k_Z(~rrk+l, A~-+I, Fk+ 1, OFk+ 1, W[+~) (2.14) 

where 

Q~con"~(Hm) = ~ ( - 1 )  IWm\Bml 
Bm ~ Wm 

( x P  L ' - m ( A m W F m ) - , L  t m #F  i 
i 1 

R t m - l ( E m ) -  ' R t m - l ( a F m ) ,  (Om\Bm) +) 
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By Em we denote in this formula the set A m k.)1" mk.) Bin, and m is equal to 
k + 1. At the step j when for the first time 

~=Aj+I=Wj=Rt-J(~Fo U ... w OFj) c~ Z • {0, 1, 2,...} (2.15) 

we say that the chain Hj is truncated. The contribution S(Hj) of the 
truncated chain Hj in the expansion of probability P(a~0 ) is 

J 

S(Hj) --- I-I , -k  Q~ (2.16) 
k = 0  

where t - j  Qcona(Hj) is equal to 1. 
Thus we can write the complete expansion for P(OA0 ) as the sum of 

contributions over all truncated chains Hi, 

e(Ao ) = i ~ S(Hj) (2.17) 
j=O H] 

To each truncated chain Hj we assign the value IFI = IFol + - "  + I/)L. 
Then we have 

P ( A o ) =  ~ ~ S(Hj )=  ~ C,,(A) (2.18) 
n = l  Hj:LFI=n n = l  

Let us estimate the terms of this series. Consider Hj with [FJ = n. It follows 
from (2.3) that 

IS(Hj)I = ] lZI Q:o~(Hk) <21DI.e ~" (2.19) 
k = 0  

where IDI = IDol + --" + IOjl. Now we shall show that the number of Hj 
with I FI = n is bounded by C" for some C >  0. We have four obvious 
estimates. The first one is 

I{CI Iril=k}l<d~ for dl>0 
the second is 

]0FI = lOFol + - - -  +t6~Fj I<d2- IF t  for some d2 > 0  

(2.20) 

(2.21) 

the third is 

[D[ < d 3 - [ O F I  for s o m e  d 3 > 0 (2.22) 

and the fourth claims that the number 11 WIt of choices of the sets Wo,..., Wj 
from the sets Do ..... Dj is bounded by 

II wII -< 2 Iw~ + ' + iw/< 21DI (2.23) 
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From these estimates we obtain 

I{nj l  I /~l=n}l~<C n fo r some C > 0  (2.24) 

Combining (2.19)-(2.24), we get that for some constant 7-'>0 

IC,(A)l < (~u" e~)n (2.25) 

This proves that for sufficiently small e > 0  the series (2.18) converges 
exponentially. Considering a similar expansion for P(a~A ) 

P(cr~A)= ~ C~(A) (2.26) 
n = 1  

we note that the coefficients C](A) and Cn(A) for n < t are the sums over 
congruent sets T~Hj and Hi. Taking into account the equality (2.11), we 
find that these coefficients coincide for n < t. Having proved this fact, we 
refer the reader to Remark 1, which completes the proof of the theorem. 

Proof of Lemma 1. Obviously, it is enough to prove (2.3) in the case 
when F consists of one component. Let n+ he the number of plus vectors 
in the oriented contour /~= [z0, zl],..., [Z,_l,Z,], [ z , , zo ] ,  where the 
oriented segment zizi+ 1 is called a plus vector if z~+ 1 lies to the right of 

) 
the line zi+l. Consider an arbitrary plus vector ziz~+~. We claim that 
either z~ or z,L~ is an error point. Certainly, if pr~z~z~+-----7 > 0 [where Y is a 
unit vector 0e, e=(0 ,  1), and prab  is the orthogonal projection of the 
vector E on the vector d], then pr~zi+~z~+ ~ ~> 0 (otherwise zi and z~+2 will 
be connected by the segment [z~, z~+2], but this contradicts the construc- 
tion of the contour F).  This fact implies that z~+~+Q~(z~+l)cOF and, 
correspondingly, z i + ~ ( F ) .  If prez~zi+; <0 ,  then by the same argument 
prez ~_ ~ z)i ~ 0 and zi E e(F). If pr~z~z)+ ~ = 0, then either z~_ 1 lies to the left 
of ze+ I [and this implies z;~ e ( / ' ) ]  or zi+2 lies to the right of z~+1+ l - -  
which implies that z,+~ee(l"). Thus we assign the error point to an 
arbitrary plus vector. 

Let us note that each error point corresponds to no more than 21Ot 
plus vectors, so that 

I~(/~)1 > ~1" n +, 0{ 1 = 1/210[ (2.27) 

As the contour ff is closed, there exists a constant c~ 2 > 0 such that 

n+ > ~ 2 ( n +  l - n + )  (2.28) 

Since I/~l = n + 1 > ~3IF[ for some ~3 > 0, then summing (2.27) and (2.28), 
we obtain 

[e(F)[ > ~[F[ for some ~ > 0 

which ends the proof of Lemma 1. 

822/73/5-6-9 
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3. THE CASE d = l .  ANALYTIC ITY  FOR THE GENERALIZED 
STAVSKAYA'S  MODEL 

In this section we consider PCA on Z a, d~> 1, with deterministic 
function ~b 0 from (1.4) defined by 

{ + 1  au=a~  
~~ = 1 a u # a  U 

and perturbation fo vanishing on a ~, 

{;  aU#a~  
fo = au=a~ 

For convenience we shall number points (vectors) of the set U in an 
arbitrary order: U =  {ul ..... Us}. We remark that given d =  1 and basic set 
U = { (0, - 1 ) ,  ( - 1 ,  - 1 ) } ,  we obtain the well-known Stavaskaya's model, 
which is why we decided to call the model defined by (1.1) (1.6) a 
generalized Stavskaya's model (GSM). As every point of the basic set is a 
plus set for GSM, Toom's criterion for the GSM takes a very simple form: 
"GSM is stable iff vectors Ul ..... us are not collinear" (we shall call this 
Toom's condition for the GSM). The main result of this section is in the 
following theorem. 

Theorem 2. For  sufficiently small ~ > 0 the GSM under Toom's 
condition converges exponentially to the limiting stationary state. Limiting 
finite-dimensional distributions are analytic functions of ~ in a 
neighborhood of zero. 

Our study of the GSM of such a type is based on ideas and arguments 
similar to those of Section 2. In the same way as in Section 2, we start 
studying the probability P(a~), A cZa~ +~ by introducing the cluster 
construction. 

The Construct ion of the Cluster 

Consider an arbitrary finite set A c Z  a+l, and fix an arbitrary 
~ d +  1 configuration q on --t , coinciding with a~  on A. The set F c  Z,  a+ ' is 

called a cluster corresponding to the configuration q [we will denote it as 
F =  F(a) ]  if it satisfies the following conditions: 

(i) sup A ~ F; each connected component of F 
contains at least one point from sup A 

(ii) z ~ Z  a+l, U ( z ) ~ F ~ z E F  
(iii) A c~ O F - - ~ ,  where OF is a boundary set 

{z ~ Z, d+ l \ r l  O(z) n r ~  ~ }  

(iv) the configuration ff agrees with a r on Y and a+r on OF 

(3.1) 
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Thus to any configuration g coinciding with a~  on A we assign the cluster 
F, which we shall call the cluster F with the kernel A. The immediate 
consequence of the construction of the cluster is in the fact that for any 
other configuration o- that agrees with ~A, a t ,  and a~-r its cluster is the 
same. 

We introduce the set AF of adjacent points in F by 

~F= {ze r lO(z)aOr # Sg} 

and the set F \ A F  of internal points. 
The point z e F is called an error point if U(z) does not belong to F;  

this will imply ~z(av(z))= + 1. This definition agrees with the definition of 
Section 2. The set of error points is denoted by e(F). 

Using the relations between configurations and its clusters, we can 
give the expansion 

P(a j  ) = ~ ~ P(a) = ~ P(A -, F- ,  c3F + ) (3.2) 
F a :  F(o-)  = F F 

where the sum is over all possible (including infinite) clusters Fo. 
To obtain the situation mentioned in the remark, we need to prove 

that the number of finite clusters grows at worst exponentially in the 
cardinality of AF, i.e., for some C > 0 

I{r[ IArJ =n}l ~<c" (3.3) 

and that the estimate 

]e(r)[ > c~ [zlFJ (3.4) 

holds for all finite clusters for some ~ > 0. These estimates will also be used 
to show that the probability of having an infinite cluster is equal to zero. 

We start the proof of (3.3) by showing that the adjacent set of each 
component of F is connected. 

k a m m a  2. For any connected set F satisfying condition (ii) the 
adjacent set AF is connected. 

Proof. We use induction on the cardinality of F. If IF] = 1, then AF 
is connected. Assume that for any set of the type considered and of 
cardinality less than or equal to n its adjacent set is connected. Consider 
the arbitrary connected set F of cardinality n + 1, satisfying Condition (ii). 
We shall prove that AN is connected. 

Choose a point z o ~ F with a minimal t coordinate. The set F\zo can 
be represented as F \ z  o = 0 m= J Fi, where m is no greater than 2d and each 
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component Fi is connected and satisfies condition (ii). According to our 
inductive assumption all the AFi are connected. So, if A F =  zo L)i~=1 AFi, 
then A F  is connected, because Zo is connected with all the AFi. In the other 
case the addition of Zo to the set UiQj Fi will change the status of some 
points in A F T t h e y  will become internal instead of adjacent (we shall call 
such points changed points). It is easy to see that owing to the t-coordinate 
minimal property of Zo changed points are of the type z = Zo - u~ for some 
u ~  U. Cases Z=Zo+U~ and z - - z o - u ~ + u  B can easily be seen to be 
impossible. Now we shall prove that for any adjacent point y e A F  
connected with the changed point z the point y is connected with z0 in AF. 
Thus the change of the status of the changed points does not violate the 
connectivity of A F  induced by AFt,  i=  1,..., m, due to the contribution 
of Zo. We shall consider all possible representations for the adjacent point 
y connected to the changed point z = Z o - U  ~. The following cases are 
possible: 

(a) y = z + u B ,  u ~  U. 

T h e n y = z o - u ~ + u s ,  s o y  A r z o "  

(b) y - - z - u ~ + u ~ ,  up, u ~ U .  

In accordance with the minimal t-coordinate property of z o, the point 
Z o - U ~ + U ~ = Z + u ~ = y + u ~  belongs to AF, hence y A r y + u ~ = z + u ~ ,  
and by (a), z + u ~ a r Z o .  

(c) y = z - u ~ ,  u ~ U .  

If y - Uq + up ~ OF for some Uq, Up ~ U, then we have z - Uq + up ~ F and 
z - u~ + up = y + Up ~ F. From the fact that 

y - Uq + up = (z - u~ + Up) - Uq = (Z -- Uq "~- Up) --  bll3 

belongs to OF we find that z - u~ + up and z - Uq + up belong to AF. Thus 
y, ,~3rZ-Uq-t-Up and by (b), Z--blq'~blp~AFz O. So, ify--Uq-l-UpEO[" for 
some Uq, blp6~I'~ then y ~ r z  o. Consider a case when for any Uq, Up6 U~ 

y - -Uq+blp (~ I ' .  Then y--Uq+UpGF for all Uq, upE U and y - u ~ O F  for 
some u~e U. But then ( y - u , ) + u p e F  for any upe U, so y - u ~  must 
belong to F according to the condition (ii) from (3.1). This contradiction 
completes the proof of the lemma, as we have checked all the possible 
cases. 

Now, to finish with the proof of (3.3), let us fix a point z ~ A .  
According to the Toom's condition for GSM, we have at least two vectors, 
say u~ and u2, which are not collinear. For  some i (F )e{0 ,  1,2,...} a 
point z l = z + i ( F ) . u j e A F ,  and for some j (F )e{0 ,1 ,2 , . . . )  a point 
z2 = z + j ( F ) ,  u 2 e A F .  As the set A F  is connected, there exist a constant fl 
such that for all clusters F we will have i( F)  + j (  F)  < [1 [AF]. That means 
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that  there exists some C > 0 such that  we have no more  than C" different 
adjacent sets of  cardinality n for clusters containing the point  z. Combining 
this with the fact that  the adjacent set of the cluster completely determines 
the cluster, we finish the proof  of  the estimate (3.3). 

N o w  we prove the estimate (3.4). 

L e m m a  3. 
finite clusters F 

There exists sufficiently small e > 0  such that for all 

I~(r)l > ~ J3rl 

Proof. Taking an arbi t rary point z sAF, we shall assign to it an 
error point. The number  of  points assigned to each error point  will be 
bounded  by the same constant.  Consider a parallelepiped 

P ( z ) = z w { z +  ~ 7~q(Ui) j,q=l,...,s} 
i = 1  

where gq(bli)= Ui+ q(mod s)' If  P(z) contains an error point, we shall assign it 
to z. If  not, then P(z) ~ F. In this case for each u~ - u~ e U we have 

z + u l  + . . .  + u s + u ~ - - u ~ = w + u  ~ 

where w eP(z), and as there are no error points in P(z), we obtain 
z + u l + - . . + u ~ + u ~ + u p ~ F .  Since z + u l + . . . + u , ~ P ( z )  c F  and 
z + u l +  .-- + u  s is not  an error point, we find that z + u l  + .-. + u s  is an 
internal point  in F. Consider any internal point  Zo e F. If  the point  Zo + u~, 
u~ e U, is not  internal, then either y = Zo + u~ is an error  point or  for some 
u~, u~ ~ U we have Zo + u~ + u ~ -  u~ E ~F. Thus y -  u~ = Zo + u~ - u~ is an 
error point. 

Now,  taking the internal point  z + ul + -..  + us, we shall start moving 
from it in the direction of  vector ul,  then cyclically in the directions 
u2, u3,..., us, u,,  u2 ..... until we reach the first point  y which is not  internal. 
According to the above remark, either y is an error point  or  a point  
x = y + u~ is an error point  for some us e U. We then assign this point, 
found via our  algorithm, to z. Note  that  for any error point  x, we can find 
all the adjacent points z ~ AF to which it is assigned. For  any given error 
point  x, either z satisfies P(z) ~ x, giving ]P(z)J = s 2 - 2s + 2 possibilities for 
z, or z is the first point  of AF encountered when moving backward from 
x or  y = x + u~, u~ e U, first in some direction - u ~  and then cyclically 
in the directions - n _ ~ ( u ~ ) ,  - n _ 2 ( u p ) ,  etc., giving s ( s + l )  additional 
possibilities for z corresponding to choices of e and/3. This fact proves the 
assertion of the lemma with e = l/(2s 2 + 2). 
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Remark 3. Now it is evident how to prove that the probability of 
having an infinite cluster containing some fixed point Zo is equal to zero. 
Below we will give a detailed algorithm to prove it without going into all 
the technicalities, as they are just a restatement of those for the case of 
finite clusters. 

Consider a sequence of cubes 

Jn=  {(xl ..... xd)~Zal [xil<~n,i=l,...,d } in Z d 

= t " + JR } be a parallepiped based on J,, and slanted and let Jr, U , = o { - n  Ul 
in the direction of the vector -u~ .  Let A, be an event that there exists a 
cluster F containing the point zo intersecting one of the side faces of J~n. In 
keeping with the Borel-Cantelli lemma, to prove that the probability of an 
infinite cluster is equal to zero, it is enough to prove that there exists an 

> 0 such that for all t we can show that ~, ,~o P(A,) < ~ .  To do it, let us 
consider, for any cluster F intersecting one of the side faces of jr ,  n > t, and 
containing the point z0, a minimum rnc {0, 1, 2,...} such that a point 
z~ = Zo + m.  ul is an error point. Denote by AFt the connected part of AF 
that belongs to J~, and contains this point zl. In keeping with Lemma 2, 
the set AF~ must intersect one of the side faces of J',, so its cardinality 
is greater than m. Thus to each cluster we assign a connected set 
AF1 (A~L (Zo + i. Ul). Repeating all arguments of Lemma 3, we obtain that 
a fixed proportion of points in this set are error points. This means that for 
some small e > 0  for all n > t the probability P(A,)< fl~ for some fl < 1. 
This implies the convergence of the considered series and finishes the proof 
of the statement. The  details are left to the reader. Now we are ready to 
consider the time-space muttistep cluster expansion for the probability 
P(aAo ) of the configuration on an arbitrary finite set A o c Z ~  +1 (we 
introduce "0" to show that we are at the starting point of our expansion). 
Taking t = upAo, we consider all configurations ff in ZJ +~ coinciding with 
aA0 on A 0, and assign to each such configuration the cluster Fo = Fo(q) 
with the kernel Ao and the boundary ~Fo. The expansion (3.2) for Ao is 
then 

P(~L)=T~ ~ P(~)=Sf(Ao,rff ,arg)  (3.5) 
ro g:/0(9) =/'o ro 

The probability on the right side of (3.5) can be rewritten as 

P(Ao,  Fo ,  OF~ ) = P(F o I [Ao \ ro ]  -, ~r~-). P([A0\Fo]  - ,  0Fo ~ ) 

= p(ro-  I ~ r ?  ). P([Ao\ro] -, ~ro ~) 
= ~l,(ro)l. P([Ao\Fo] - ,  8Fg) (3.6) 
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where the last equalities are the immediate consequences of the construc- 
tion of the cluster. Next we rewrite probabilities on the right side of (3.6) 
a s  

P ( [ A o \ r o ]  - ,  OF + ) = (1 - e) l~up arol. p ( [Ao\Fo  ] - ,  [0Fo\sup 0Fo] + ) (3.7) 

Using the fact that the probability of a plus configuration on some set may 
be rewritten as a sum of probabilities of minus configurations on the 
subsets of this set, we continue the expansion writing 

P( [Ao\Fo]  , [0Fo\sup 0ro]  +) 

= Y~ ( - 1 ) r W o ' . e ( [ W o v A o \ r o ] - )  (3.8) 
Wo~SFo\supOFoc~Zdx { i ,  2,...} 

Putting A~ = W o w A o \ F o ,  it follows from (3.6)-(3.8) that 

P ( A o )  = ~ ~ ( - 1 )  Iw~ �9 ( l - e )  I*~p ~176 .e r~(r~ . P ( A ( )  (3.9) 
Fo Wo 

Noting that up(A , )<  up(Ao), we now see how to continue the expansion 
(3.9). In exactly the same way that we constructed clusters with the kernel 
Ao, we now construct cluster F1 with the kernel AI for each configuration 
in ~tvd+ll which agrees with o-A- ~, obtaining corresponding sets F1, W1, and 
0F1. Thus defining the set A2 = W1 u A I \ F  ~, we rewrite the probability of 

7 d +  1 the configuration on the set A1 c ~ t - ~  as the sum of the probabilities of 
the configurations on sets in 7a+ ~ Since at every step we move down the ~ t - - 2  " 

t axis for no less than one unit of time, we continue the expansions of the 
form (3.6) for no more than t steps, indexing corresponding sets arising in 
the expansion by the number of the step. Thus we obtain 

P(6Ao) = i E (--I) 'w~ "'" +'wk' 

n = l  Ao,Fo, Wo,...,Ak,Fk, Wk: 
bdF01 + ---  + IAFkl =n  

x (1 __ e ) l s u p O F 0 1 +  . - .  + ]sup 0 / ' k l  . ~ n  

= ~ c~e ~ (3.10) 
n = l  

The sum is over all the chains of sets arising in the algorithm for the expan- 
sion under the condition Ax+ ~ = ~ for some k ~ t. Since lOCI < do IAF~I 
for some constant do>0,  the coefficient c, in (3.10) is a polynomial in 
(1-  e), and the degree of the polynomial is smaller than do. n. Using the 
estimate (3.3), we find that the coefficients of this polynomial are smaller 
in absolute value than C7 for some C t > 0. Applying the same construction 
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for the minus configuration on the sets T~IAo and T~2Ao, we will obtain the 
expansions of these probabilities into the series 

p ( 0 " T Z l A 0 )  z ~ ,  "~1 tl c,  e and P(ar~2Ao ) = ~ cn n 
n n 

el and z2 Looking  at the expansion (3.10), we notice that  the coefficients c ,  c ,  
are the sums of the same quantities over the congruent  sets if the chain of 
the expansion is t runcated before it reaches the t = 0 level. That  is why 
there exists a constant  0 such that  for n < 0.  min(zl ,  z2) the coefficients c ,  

�9 2 coincide. As these series converge exponentially for sufficiently small and c n 
e, we immediately obtain exponential  convergence of the probabilities 
P(a~Ao) to some limit /~(a~0) for sufficiently small e > 0  as z tends to 
infinity. This fact together with the properties of the coefficients c~, provides 
analyticity of #(a~0 ) in ~ in a ne ighborhood  of zero. 

We remark that  the assertion of the theorem remains valid if the 
perturbat ion is of the following type: 

0, o u = a ~  
f ~  ~(av), a v # a ~  

where e(av)  are analytic functions of e in the 
le(au)l ~< cons t ,  e. 

ne ighborhood of zero, 
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